TECHING PLAN

Name: Akash Dipta Thakur

Course: B.Sc

Semester: Fifth.

Department : Physics

Programme: Major

Class allotted: 4 per week(Theory) 2 per week(Lab)

Paper/Unit	Course Content	Key aspects	Teaching	Classes
			Methods	required
PHYM		1.Introduction		
50200/UNIT-	Electromagnetic Fields: From	2.Displacement Current.	1. Lecture	Four
I and II	Electromagnetic Induction upto	3.Maxwell's Field	Method using	classes
	Poynting Vector and Poynting	equations-Integral and	White Board	per
	Theorem.	Differential forms.		week
	Propogation of Electromagnetic	4.Electromagnetic		
	waves: Propogation of	potentials.		
	Electromagnetic waves in	5.Maxwell's wave		
	different media upto Reflection,	equations.		
	Refraction and Polarisation of	6.Lorentz and Coloumb		
	Electromagnetic waves,	Gauge.		
	Brewster's angle.	7.Field Energy and		
		Field Momentum.		
		8.Plane waves in non-		
		conducting media,		

	polarization.	
	0 Plane wayes in	
	conducting medium,	
	skin effect.	
	10. Reflection and	
	Reraction of a plane	
	wave at an interface	
	between two	
	Dielectrics, Boundary	
	Conditions.	
	11.Fresnel's Formula.	
	12 Total Internal	
	Deflection	
	13.Brewster's angle.	

PHYM50500			
	MI. Thermal Conductivity- Searle's Method.		
	MII. Specific Heat ratio – Clement and Desorms method	Proper demonstrations	2 Classes per
	MIII. Platinum Resistance Thermometer.		week.
	MVI. ECE of copper.		
	MVII. Optical rotation by Polarimeter.		
	MVIII. Anderson's Bridge.		
	MIX. Series and Parallel Resonant Circuit.		
	MX. Half wave and Full wave rectifier.		

Signature of Teacher Akash Dipta Thakur

TECHING PLAN

Name: Akash Dipta Thakur

Course: B.Sc

Semester: Third

Department: Physics and Electronics

Programme: Major

Class allotted: 1per week(Th)

Paper/Unit	Course Content	Key aspects	Teaching	Classes
			Methods	required
PHYG	Magnetism : Starting from Biot-Savart	1.Magnetic field due		
30100/UNIT-I	Law upto Magnetic substances – Dia,	to a circular current	1.	one
	Para and Ferromagnetic substances.	carrying loop and	Lecture	class
		Solenoid- at the centre	Method	per
		and on the axial line;	using	week
		Gauss's theorem in	Black	
		magnetism and	Board	
		applications.		
		Magnetic		
		permeability,		
		Susceptibility,		
		Magnetization,		
		Magnetic intensity		
		and their relation. Dia,		
		Para, Ferromagnetism.		

Signature of theTeacher Akash Dipta Thakur

Department of physics

J B College

Jorhat

TEACHING PLAN (THEORY) for the Year2016

Name of teacher: Dr Jibon Saikia

Course: B.Sc. (Hon)

Semester: I

Programme: Major

Class Allotted: 16

Paper/Unit	Course Content	Key Aspects	Teaching Methods	Classes required
PHYSICS-C II	MECHANICS a)Gravitation and central force b)Oscillations	 1.Laws of gravitation ,Gravitational potential 2.Inertial and gravitational mass 3.Pot due to a spherical shell and solid sphere 4. Motion under a central force 5.Two body problem 6.Energy equation 7.Kepler's laws 8.Satellites, Geosynchronous orbits 9.Weightlessness,GPS 10.SHM 11.Energy of a body executing SHM 12. Damped oscillation 13.Forced oscillations 14.Resonance 15. Power, Q-factor 16. Question discussion and assignment checking 	Lecture using Black Board, inquiry based teaching method	One classes per week (16) (Extra classes has to be taken)

Jibon Saikia

Signature of the Teacher

Course: B.Sc.

Programme: Major

Semester: III

Class Allotted: 22

Paper/Unit	Course Content	Key Aspects	Teaching Methods	Classes required
PHYM30100/I&II	Geometrical optics and Interference	 1.Aberrations – types 2.Details of monochromatic aberration 3&4 In lenses 5.Achromatism in lenses 6. Achromatism in prisms 7. Eyepieces – principle 8.Types of eyepiece 9. Qn discussion 10 Assignment Checking . 	Lecture using Black Board	Two classes per week (24)

Jibon saikia Signature of the Teacher

Course: B.Sc.

Programme: Major

Semester: V

Class Allotted: 14

Paper/Unit	Course Content	Key Aspects	Teaching Methods	Classes required
PHYM50300/III	Molecular spectra and Lasers	 Introduction to molecular spectrum- its origin Types – Analytical treatments Types – Analytical treatments Types – Analytical treatments 4Details of P and R Branches Raman scattering Classical theory for Raman Effect Assignmen Checking Introduction to Lasers 9Theories-Eiensteins, coefficients and their relations Theory and workings of Lasers Theory and workings of Lasers Theory and workings of Lasers Question paper discussion. Assignment checking and query meet 	Lecture using Black Board	Two classes per week

Jibon saikia

Signature of the Teacher

Jagannath Barooah College TEACHING PLAN(Theory)

Name- **Dr Ranjit Sarma** Semester- I Department- **Physics** Class allotted- **15** Program- Honours with Physics

Course- BSc (CBCS)

Paper/Unit	Course Content	Key aspects	Teaching methods	Class required
CII/IV	Mechanics: 1.RotationalDynamics 2. Elasticity	Angular momentum of a particle and system of particle Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Motion involving both translation and rotation. Relation between Elastic constants. Twisting torque on a Cylinder or Wire.	1)Black board 2) LCD	15

Romit Sama

Signature of the teacher

Jagannath Barooah College TEACHING PLAN(Theory)

Name- Dr Ranjit Sarma

Program- Major

Course- BSc

Semester- III

Department- Physics

Class allotted- 10

Paper/Unit Teaching **Class required Course Content** Key aspects methods 30200/IV 1.Electromagnetic Electromagnetic 1)Black 10 induction, Faraday's law induction board and Lenz's law, self and 2) LCD inductance. mutual methods of measurements. 2.A.C. Current AC and DC generators and motors, transformer, relation between maximum, average and virtual or effective (rms) values of current,

Romit Same

Signature of the teacher

Jagannath Barooah College TEACHING PLAN(Theory)

Name- Dr Ranjit Sarma

Program- Major

Semester- V

Department- Physics

Course- BSc

Class allotted- 13

Paper/Unit	Course Content	Key aspects	Teaching	Class
			methods	required
50400/I	1.Semiconductors	Charged particles, electronic structure of elements, energy band theory of crystals,conductors, semiconductors and insulators, electrons and holes in semiconductor, donor and acceptor impurity, generation and recombination of charge, diffusion, continuity equation.	1)Black board 2) LCD	13
	2.PN Junction diode	Junction diode characteristics: the open circuited P-N junction, I-V characteristics of P-N diode, breakdown diodes, diode as a rectifier, half- wave and full-wave rectifier with resistance load, ripple factor, smoothing filters, DC power supply		

Ronot Sarma

Signature of the teacher